Code Finder: Scores or Probabilities

Robert M. Haralick
Computer Science, Graduate Center
City University of New York
365 Fifth Avenue
New York, NY 10016
haralick@netscape.net

1 Introduction

In this note we analyze the score calculation done in the Code Finder program
for determining its relation to the probability that a cluster of ELSs in a table
of given size would happen by chance.

Our first order of business is to say what probability means. For us
probability must always be associated with an experiment. The experiment
begins with an experimental protocol that has

1. a priori specification of the key words
2. a monkey text population

3. an ELS skip search specification

4. a resonance cylinder size specification

5. a procedure by which a compactness score value for a text can be
computed

In the experiment, a text is randomly sampled from a specified population
of texts, called the monkey text population to indicate that whatever effect
is thought to be occuring with the Torah text it is certainly not occuring
in the texts of the monkey text population. In accordance with a given
experimental protocol, a table of ELSs is constructed and a score C' measuring
the compactness of the table is computed. The probability we are interested
in is the probability that a randomly sampled text from the population will
have a table whose compactness score C' is smaller than or equal to Cp:
Prob(C < Cy), where Cy is the compactness score observed in the Torah
text.

This probability can be determined two ways. One way is to determine
the probability analytically exactly analogous to the kind of analytic com-
putation of drawing five cards at random in a poker game and having a full
house. In the case of small combinatorial situations, this way is tractable.
In the general situation, particularly with regard to Torah code tables, it is
difficult if not tractable.

The second way is to estimate the probability by a Monte Carlo exper-
iment. In the Monte Carlo experiment, a given number, N, of texts are
sampled from the specified monkey text population. For each of the ran-
domly sampled texts, a table of ELSs is constructed in accordance with the
experimental protocol and the compactness values (1, ..., Cy of the tables
from the N texts is computed. Then Prob(C' < Cjy) is estimated by

Prob(C < Cy) = #{n €{0,1,.. ~A,7N} | C,, < Co} "

the fraction of texts whose compactness value is less than or equal to that
observed in the Torah text. Hence the probability Prob(C' < Cj) means the
probability that a randomly sampled text from the text population will have
a table that is as compact or more compact than the table obtained from the
Torah text.

There are two conditions that must be satisfied by the Monte Carlo exper-
iment in order for the fraction computed in equation (1) to have the meaning
of being a probability. The first is that the entire experiment protocol must
be specified in advance before the experiment is done, thereby guaranteeing
that no information gained from the Torah text itself is used to define any
part of the protocol.

The second is the condition of symmetry or uniformity. Simply stated
it is that whatever procedure is carried out on the Torah text to establish
a compactness value Cy must be done exactly the same way to compute a
compactness value C' from each text sampled from the monkey text popula-
tion.

The Code Finder program attempts an analytic calculation. We will go
through the details of this calculation explaining exactly what probability
the program intends to compute and how that differs from the correct prob-
ability it ought to be computing. We will show that the Code Finder score
calculation produces a number that can be biased orders of magnitude too
small compared to the probability that the Monte Carlo experiment would

produce. Recall that it is the Monte Carlo experiment that defines what the
probability means.

2 The Code Finder Calculation

The Code Finder calculation is based on a monkty text population of random
letter permuted texts. The program lets the user specify a Torah text such
as Genesis, or the Five Books, or any one book of the Tanach, or the entire
Tanach. The program then lets the user set a fixed minimum and maximum
skip specification, for each key word. The user provides a list of key words.
Then the program finds all the ELSs satisfying the skip specification of the
given list of key words in the specified text. Next the user does some in-
teractive manipulation attempting to construct in some undefined sense the
smallest table having at least one ELS of the key words. In terms of a com-
pletely specified algorithmic procedure, this constitutes a weak link. But it
is in fact not the cause of the difficulty of the Code Finder calculation.

Once the user has constructed a table, the user has a list of the ELSs
that the table contains. Associated with each ELS is its absolute skip. The
Torah code effect has been hypothesized to occur at the smaller ranked skip
lengths and therefore, the compactness score function should put more weight
on those ELS with relatively smaller skips. Let us see how Code Finder does
this.

In a text of length Z the number N of possible placements an ELS of a
non-symmetric key word of length L can have with absolute skip lengths of
1 through skip length D, is given by

N(Z,L,D) = Dx*(2Z —(L—1)%(D +1))

This is the same calculation done in the 1994 Witztum, Rips, and Rosenberg
paper. See the appendix for the details.

In the letter permuted text population, the ELS placement probability
for ELSs of a word whose letters are < aq,...,ax > is given by

p = kl:[p(Oék)

where P(qy) is the probability that letter ay occurs in the text. Hence,
the expected number of ELSs in a randomly sampled text from the letter
permuted text population is £ = pN.

In producing what Code Finder interprets as the odds of the table being
one that could have happened by chance, the expected number that the Code
Finder program provides is not based on the maximum skip specification of
the search, but on the absolute skips of the ELSs occurring in the Torah
code table. As we will discuss later, this makes the interpretation of the
score that Code Finder associates with a table, to be one that has no proper
interpretation as the odds that the table could have arisen by chance.

We continue on with the Code Finder calculation. Code Finder sets D to
the absolute value of the ELS skip. The Code Finder program converts this
ELS expected number to an R-value defined by

R =log(1/E) (2)

This is the R-value as originally defined by Dr. Alex Rotenberg in his SofSof
Torah code program. Thus, ELSs having small expected number, small being
less than one, will have R-values larger than 1. The R-value was defined by
Dr. Alex Rotenberg for the purpose of associating a score with an ELS that
would be a measure of the degree to which the ELS was a small skip ELS.

Let us consider an example to illustrate these calculations. We will use
three key words, the first key word being the axis key word. The key words are
Mega Terror, Prayer, and Mega Attack. Searching for ELSs with a maximum
absolute skip of 30,000 and interactively finding the smallest area table we
obtain the table shown in Figure 1.

Mega Terror NIV N

Prayer -

Meta Attack N YN

3/03:13 n ny AXH9pM - AR NN o nno) 713703 11
3/15:12) A 9 YUN > DD T3 o na Y T)A N NI {3715+ 11
3727+ 180N)y) DTV 22 NN NN 229y2 v TP 3127017
47101 30N 591) DN YNV) © n N) D ")4110: 29
471220 340N) N NI nonNny DEY) lp | AR B yvo vl a2 s
4735, 1287) YNvVoPH> Ynnooy NIMVave)Y NOn nnv no v 4735011
5711047) 891 N> 980 i 97 noy nNa YN NN NNS/11:03

Figure 1: The cylinder size is 27083 and this is the smallest area table having
an ELS of each of the key words.

Keyword Skip P N E R

NWRID | —27083 | 1.098312 x 10710 | 1.00778 x 1010 1.01686 | —.04409
ﬂ'?'Dn —6 | 6.255486 x 1077 | 3.04787 x 10° 2.28794 | —.035944

N Jefahsiia) 5 | 2.037707 x 10711 | 4.266934 x 10° | 6.210666 x 1075 4.20686

Figure 2: Shows the intermediate calculations for the R-value. p is the prob-
ability that the characters of an ELS will match the characters of a text in a
random placement. N is the number of placements of an ELS of the given skip.
E = pN is the expected number of times that in a random letter permuted text
a random placement of an ELS of with absolute skip less than the absolute
skip of the ELS found in the Torah text, will match the characters of the text
in the placement. R is the Rotenberg R-value, which is the log of 1/FE.

To understand the table of Figure 2, we consider the following experiment.
We construct a population of texts, each text being a letter permutation of
the Torah text. This means that we repeatedly take the Torah text and
randomly shuffle its letters, adding the randomly shuffled Torah text to the
monkey text population. We do this for a very large number of times. Then
we randomly choose a monkey text from the population. We take the abso-
lute skip 27083 ELS of 17032 and successively place it in every possible
position we can and then check whether each of the letters of the ELS match
the letters of text over which they are positioned. We count the number of
times all the letters match. Then we repeat the experiment randomly sam-
pling another text from the monkey text population and obtain a count of
the number of times all the letters of the ELS match among all the possible
placements of the ELS. We do this for a large number of times, say, M times.
If we were to take the arithmetic average of all the counts we obtained, as M
larger and larger, we would find that the average would get closer and closer
to the expected number £ = 1.01686 for the absolute skip 27083 skip ELS
of ML,

We can then ask, what is the probability that if were to randomly sample
one text from the monkey text population we would find at least one place-
ment that the ELS would match among all the N possible placements. This
probability is

P(At least one placement matches) = 1 — (1 — p)~

When pN < 1, this probability is approximately pN = E Often the

Poisson probability distribution is used as an approximation because the

Poisson approximation is valid regardless of the value of p/V.

EFeF

k!
And from the Poisson approximation we can compute the probability that
there will be at least one match. The probability of at least one match is 1
minus the probability of no matches. Hence,

P,pisson(k placements match) =

EO —-FE
(fl =1—¢"F

P(At least one placement matches) =1 —

Using the Poisson approximation we can then develop a table that tells
us for each ELS, the probability that there will be at least one placement of
the ELS in which characters of the ELS match the corresponding positions
in a randomly sampled text.

Key Word Skip E P
IR | —27083 1.01686 63827
aral)e) 6 2.28794 189852
NIDVID 5] 6.210666 x 10~ | 6.2105 x 102

Figure 3: Shows for each ELS the expected number F of times a placement
of the ELS will match a randomly sampled monkey text and the probability
P that in a randomly sampled monkey text at least one placement of the ELS
will match the text.

Now we assume that the text has a large number of characters and the key
words of the ELSs have a very small number of characters. In this case there
is no interference of the random placements of the ELSs, meaning that if we
were to randomly place each ELS, the probability that one text character
position would be covered by some letter position from one ELS and some
other letter position from another ELS is 0. In this case, we can compute
the probability that in a randomly sampled monkey text, we will obtain at
least one placement of each ELS that will match the text characters.

Here we must carefully state that an ELS of 1732 means one whose

absolute skip is no more than 27083, an ELS of m2'®N means one whose
absolute skip is no more than 6 and an ELS of XJ2WI3D means one whose

absolute skip is no more than 5. Because of independence, this probability is
the product of the individual ELS probabilities. In our example case we have,

P(Each ELS has at least one placement that matches)

= .63827 x .89852 x 6.210666 x 107>
3.5618 x 107°

So it seems that this event of each ELS having at least one placement
that matches is a rare event. However, this rare event does not correspond
to the experiment done. The experiment done was searching for ELSs of
the three key words in skips ranging from -30,000 to 30,000. It was this
search that produced the ELSs among which were the ones we found in a
configuration of what appears to be a compact table. Clearly, the probability
associated with this experiment is larger than the one Code Finder computed:
P(Each ELS has at least one placement that matches) = 3.5618 x 107°. Let
us see how much larger. Examine the calculations of Figure 4.

Max Abs.
Key Word Skip P N E P
Rimiaphia 30000 | 1.098312 x 10710 | 1.28812 x 1010 | 1.41557 | .75721
ﬂb'ﬂﬂ 30000 | 6.255486 x 10~7 | 1.46882 x 10'° | 9188.17 | 1.00000
b Jefabsiik}a) 30000 | 2.037707 x 10~ | 1.28812 x 101° .26248 | .23086

Figure 4: Shows the intermediate calculations for the Poisson probabilities under the
condition of the actual search done. This was a search for ELSs having absolute skip of
30,000 or less. p is the probability that the characters of an ELS will match the characters
of a text in a random placement. N is the number of possible placements of an ELSs
whose absolute skip is 30,000 or less. E = pN is the expected number of times that in a
random letter permuted text a random placement of an ELS of a skip 30,000 or less will

match the characters of the text in the placement.

Now we can compute the probability that the search of the experiment
performed would produce at least one ELS for each key word in a randomly
sampled monkey text. P(At least one ELS for each key word) = .75721 x
1.000 x .23086 = .17481, a little less than one out of five, hardly something
that could be called rare.

In other words, it is expected that in a search for ELSs whose absolute
skips is no more than 30000, that we expect to find one ELS for each of
our three key words in a randomly sampled monkey text in a little less than
one out five times. The difference between this probability and the one
Code Finder calculates is about four order of magnitude. If there were more
key words, this would tend to make the orders of magnitude difference even
larger.

Of course the question is not that there are ELSs of each of the key words
in a randomly sampled monkey text. The question is how unusual is it in
the monkey text population that there are ELSs for each of the key words
that can be found in as compact formation as we found them in the Torah
text. To answer this question here is what the Code Finder program does.

Suppose that the interactively constructed table from the Torah text has
an area A, the product of the number of rows and columns of the table.
Further suppose that there are M key words and and the expected number
of their ELSs are Fj, ..., Ey, expected number meaning expected number
of ELSs whose absolute skip is no more than the absolute skip of the ELSs
found in the interactively constructed table. The corresponding R-values are
Ry,..., Ry Let us also suppose that each key word has at least one ELS
present.! Code Finder then multiples each expected number by the fraction
A/Z to obtain what might be called the area adjusted expected number E’
of ELSs within the table area.? And the corresponding matrix R-values, here
denoted by R’, are computed from these expectations.

A

E = EE
R = log(1/E")
— log(—
N AJZ2)E
log(1/(A/Z)) + log(1/E)
R+1log(Z/A)

Each matrix R’ value can be seen to be the R-value plus the log of the length

IThis supposition itself is problematic because what typically happens is that a key
word with no ELSs in a table will just be thrown away, making the key word set not a
priori. But this problem is a problem with the a priori specification of the key words and
not a problem with probability calculation itself.

2Tt can be seen from (2) that if the length of the text is reduced to half, the expected
number E’ of ELSs is in fact not reduced to half so this calculation is not quite right itself.

8

of the text divided by the area of the table. In the case of our example,
Z = 304805 and A = 7 rows x 52 columns = 364. This makes

log(Z]A) = log(304805/364) = log(837.38) = 2.9229

Figure 5 shows the resulting calculation for the R’ matrix R-values.

Keyword Skip P N E R R/
NMWOID | —27083 | 1.098312 x 10—1° | 1.00778 x 1010 1.01686 | —.04409 | 2.8788
1'15‘91'1 —6 | 6.255486 x 10=7 | 3.04787 x 106 2.28794 | —.35944 | 2.5635
Nanawae 5 | 2.037707 x 10~11 | 4.266934 x 106 | 6.210666 x 10~5 | 4.20686 | 7.1298

Figure 5: Shows the intermediate calculations for the R-value and what Code
Finder calls the Matrix R-value, here denoted by R’. p is the probability that
the characters of a randomly placed ELS will match the characters of a text.
N is the number of possible placements of an ELS with absolute skip no more
than that observed of the absolute skips of the corresponding Torah ELSs in
the Torah code table. E = pN is the expected number of times that in a
random letter permuted text a random placement of an ELS of with absolute
skip less than the absolute skip of the ELS found in the Torah text, will match
the characters of the text in the placement.

To understand what Code Finder does with the R-matrix values, we must
first understand that Code Finder differentiates between the key words. The
first key word in the key word list is special and is called the axis key word.
The axis key word is typically the main topic key word and it is the one
the researcher thinks should be governing the cylinder size of the cylinder
on which the code table resides. That is, the code table cylinder size will be
close to a small multiple of the the absolute skip of the selected ELS of the
first key word. For example, if the selected ELS of the first key word has an
absolute skip of 27,083, the cylinder size of the code table can be 27,083,
13,541 or 13,542, 9,027 or 9,028, 6,770 or 6,771 allowing the selected ELS
of the first key word to appear either vertically, one letter successively below
the other in the code table, or, in this case, diagonally every other row, every
third row, or every fourth row and so on.

When a table is constructed it has three attributes. The first is its loca-
tion, meaning for example, the text position coinciding with the upper left
hand corner of the table. The second is the number of row and columns of
the table, often combined as the area of the table and the third is a score

incorporating in some way the closeness of the ELSs in the table to the axis
ELS and the degree to which the ELSs are small skip ELSs.

The protocol that Professor Haralick uses on the torahcode.us website
only incorporates the third criteria by controlling the maximum absolute
skip used in the search for the ELSs. This maximum skip is set so that
the number of expected ELSs for a key word is a user defined parameter
set to say, 10 or 50 or 100. This automatically insures that all the ELSs in
the table will be relatively small skip ELSs. Professor Haralick’s protocol
does not distinguish between two tables of the same area, one of which has
ELSs whose absolute skips are smaller than in the other table. This is must
certainly be considered a deficiency in the Haralick protocol.

Code Finder, on the other hand, creates a score that explicitly tries to
take into account both the area of the table and the degree to which the ELSs
in the table are small skip ELSs. It does this by identifying the place of the
table by the place of the axis ELS. In this way, the Code Finder analytic
calculation does not have to take into account all the possible places that the
table might have formed. Therefore the matrix R-value for the ELS of the
axis key word is not used in the table score formula.

Code Finder then takes into account the degree to which the ELSs in
the table are small skip ELSs by summing up only the positive matrix R-
values, ignoring the R-value of the ELS of the first key word which is the
axis key word. The sum is what Code Finder calls the cumulative matrix
R-value and Code Finder considers it as the log of the odds ratio that the
table would have been produced by a text in the letter perturbed monkey
text population. However, it must only be considered as a score for the
table. Indeed it does not have an interpretation of being the odds ratio for
any Torah code experiment involving the given key words and skip search
protocol.

/
Rcumulative,matrix = § R m

First let us understand how R..nulative_matriz can be understood as the log
of an odds ratio. Recall that the matrix R-values used in the sum defining
Revmutative_matriz are each defined as the log(1/E) where E is the expected
number of ELSs in the monkey text population having absolute skip no
more than the absolute skip of the corresponding ELSs in the table. In
the case that E is small, we have seen that it has the interpretation of

10

being a probability. Summing the matrix R-values produces a result that is
the log of the product of these probabilities. So under the non-interference
and independence assumptions for the placements of the ELSs, this product
would have the meaning of the joint probability of observing these kinds of
ELSs in a table from the monkey text population. From this perspective
10~ Fewmutative-matriz would be this joint probability.

In more detail, assume that there are M key words and each one has one
ELS in the table. Let E] be the matrix expected number associated with
the m' ELS. Then the summation of the matrix R-values is like taking the
product of these matrix expected numbers.

A

@=L

= 10 Beumutative _matriz

The case of interest is when each £/, is very small, less than one. When
E! is small, E/ << 1, by the Poisson approximation to the binomial dis-
tribution, £, is the probability that at least one ELS of the absolute skip
of the m' ELS or smaller will appear in the table. Hence, the product of
the expectations is the product of the probabilities that at least one ELS of
the absolute skip of the ELS or less will occur in the table. Probabilities
are multiplied when events are independent. So under the assumption that
the occurrence of one key word having an ELS in the table is independent of
the occurrence of another key word having an ELS in the table, the product
[IM_, E' is an approximation for the probability that each key word has at
least one ELS in the table. From this we understand the Code Finder’s () is
the odds ratio 1 : @ that each key word would have at least one ELS in the
table which is given at a fixed place of the ELS of the first key word, where
the absolute skips of the ELSs are less than or equal to the absolute skips of
the ELSs actually found in the table.

3 Code Finder Bias

Now let us see what the problems are with the Code Finder probability inter-
pretation of its score calculation and try to understand why @ = 10~ feumutative_matriz
is not the probability that a table as good as the one constructed from the

11

Torah text would have been found in a text sampled from the monkey text
population.

First we have already mentioned that the Code Finder calculation is bi-
ased in favor of the Torah text since the skips of the ELSs in the monkey
texts are, by the analytic computation, limited to be less than or equal to
the corresponding absolute skips of the ELSs found in the Torah text and
occurring in the table constructed from the Torah text ELSs. This means,
for example, that there could be monkey texts which have ELSs in a much
smaller area table, but some with absolute skips higher than the correspond-
ing ELSs in the Torah text and some with absolute skips lower than the
corresponding ELSs in the Torah text. And these monkey text tables, which
are better than that found in the Torah text are not counted as better.

Next, let us for the moment assume that the user has constructed the
smallest area table containing at least one ELS of each of the key words.
Some of the key words in the table may have more than one ELS. The Code
Finder summing method gives extra reward when there is more than one
ELS of a key word in the table. Some of the Torah code researchers have
argued that this is important.

This creates a problem with the probability calculation itself. Suppose
that a key word has only one ELS in the Torah code table and that its R-
value is not greater than zero. Then, in effect, the assumed a priori word
list has been changed based on information obtained from the search of the
Torah text. And the effect of this change in the score calculation is to bias
the score in favor of Torah text. The reason that the bias is toward the Torah
text is that in Code Finder’s analytic calculation, the very same procedure
is, in effect, not calculated for each text of the text population as required by
the symmetry or uniformity condition of the experiment that defines what
the probability is.

Next suppose that there is some text that could have been sampled from
the monkey text population and in the smallest area table that could be
constructed from this monkey text, the table has 2 or even 3 relatively small
skip ELSs having large R-values. The probability calculation specifically does
not take into account this possibility, thereby biasing the score calculation
to be smaller for the Torah text than for such a monkey text.

12

4 Reinhold’s Protocol

Roy Reinhold, the originator of the Torah code website
http://ad2004.com/Biblecodes/index.html

is a Code Finder promotor. He has a protocol that modifies the Code Finder
calculation, in effect, reducing the odds ratio Code Finder produces by ap-
plying what is known as the Bonferroni tax.

Mr. Reinhold reasons the following way. The user had to interactively
construct the table. In this interaction the user had to go through and
select from a potentially enormous number of combinations and try them
out. Among these combinations, the user tries out different cylinder sizes,
cylinder sizes related to the skip of the axis ELS divided by 2 or 3 etc.

Generally Mr. Reinhold’s resonance specification is that the row skip of
the axis ELS on the cylinder must be at least 1 and no more than 6. So in
effect the user is examining one position and six cylinder sizes for each ELS
of the first key word. Reinhold therefore penalizes the user with a Bonferroni
tax for each ELS of the first key word and for each cylinder size tried. This
Bonferroni tax on the odds ratio is the number of ELSs that the first key
word had times 6, the number of resonant cylinder sizes that Reinhold would
search. The adjusted odds ratio is then 1 : /B where B is the Bonferroni
penalty.

This Bonferroni penalty is based on the number of ELSs of the first key
word found in the Torah text. But the number of ELSs of the first key word
found in the letter permuted monkey texts are not the same as that found in
the Torah text. And so the calculation uses a quantity from the Torah text
that is not applicable to each monkey text.

Had the user been required to make the window extend around the first
ELS the same number of columns to the left and right and the same number
of rows to the left and right, there would be no question that the Reinhold’s
Bonferroni tax is sufficient. But because this was not a requirement, the user
had additional extension possibilities not accounted for and the Bonferroni
tax is too low. Thus, the @)/ B of the odds ratio 1 : /B is too high and the
probability calculated is therefore too small, even with Reinhold’s protocol
modification.

13

5 Probability and Score

We have argued that the computation made by the Code Finder program
must be considered a score and not a number that has a probability interpre-
tation for any kind of real Torah code experiment. In this section we further
amplify that argument.

Recall our initial description of the probability of interest. We are inter-
ested in the probability Prob(C' < Cy), where Cy is the compactness score of
the Torah text and C' is a random variable of the compactness score result-
ing from the same procedure as done on the Torah text done on a randomly
sampled text from the monkey text population. Code Finder claims that the
Cy it computes in fact is the probability Prob(C' < Cj). That is Code Finder
claims

PTOb(C S C(]) = C()

This is the case when the probability density function for the random
variable C' is the uniform U(0,1) and indeed this is the requirement for all
p-values. If C' is indeed a p-value, its density function will be uniform (0,1).

It is not that hard to check whether the score function of Code Finder
indeed satisfies this requirement by a Monte Carlo experiment. Let Cj be
the Code Finder score it interprets as a probability for the Torah text. Let
C1,...Cx be the scores resulting from the same operation done on randomly
samples monkey texts. For large N we should find that

{n € {0,1,....N} | Cu < Co}|
N+l =0

Since the Code Finder program does not do Monte Carlo experiments,
this condition could never be checked by Code Finder. The interactive user
would get bored by the time even 10 experiments would be done. But if we
had a program that could do Monte Carlo experiments, we can easily check
this condition. Indeed we do have such a program and made the Monte Carlo
experiment.

We set the maximum skip for each ELS so that the expected number of
ELSs was 50. For each text, we find the smallest area table. We score the
table using the Code Finder scoring method for the probability associated
with the Code Finder odds ratio. Our monkey text population is the ELS
random placment population. For our 3 keyword example, the Torah text
had a Code Finder score of 2.0265 x 1071 which in cumulative R-value terms

Co

14

is about 9.693. In a run of 1,000,000 trials, the p-value estimate produced
by the Monte Carlo experiment using the Code Finder scoring methodology
was 5/1,000,000, more than 4 orders of magnitude larger than the score
interpreted as a probability as Code Finder would suggest it be interpreted.

Does applying Reinhold’s Bonferroni tax fix this problem? Since there
are 6 ELSs of 10372 and since Reinhold would allow an axis ELS to have a
maximum row skip of 6, Reinhold would use a Bonferroni tax of 6 x 6 = 36.
Thus the Bonferroni corrected score would be 2.0265 x 10719 x 36 = 7.295 x
107°. The ratio of the Monte Carlo probability to the Bonferroni corrected
score is now about 685, making the Bonferroni corrected Code Finder score
between two and three orders of magnitude too small.

6 Concluding Discussion

We have illustrated an example table, indeed the first one we examined, for
which the Code Finder score calculation is orders of magnitude too small
to be interpreted as a probability. We have also explained the reasons why
this is so. The main reason being that the score calculation uses the R-
value associated with actual skip of the ELS in the table rather than the
maximum skip searched for. It is interesting that the insight for wanting
to use the actual skip of the ELS in the R-value measure is correct. The
smaller the skip of the ELS, the better the ELS is in the sense being closer
to the minimal skip ELS. Hence the smaller the skip of the ELS, the more
significance it ought to have. But that argument is more an argument for
what should be in a table scoring function than an argument for its use in a
p-value probability calculation.

In summary, Code Finder produces a score that cannot be interpreted
as the p-value probability that the constructed table could have arisen by
chance. Indeed, Code Finder’s score is, in general, orders of magnitude
smaller than the probability that the table could have arisen by chance. Or
saying this the other way, Code Finder’s odds ratio is orders of magnitude
larger than the odds ratio that the table indeed could have arisen by chance.

15

7 Appendix: Number of Placements

Let L be the length of the key word, Z be the length of the text, The span
of a skip s, s > 0, ELS of a key word with L characters is 1 + (L — 1)s. The
number N of placements such an ELS has in a text of length Z is

N = Z-(1+(L-1)s)+1
Z—(L—-1)s

Let S,,:» be the minimum absolute skip and S,,,, be the maximum absolute
skip for the ELSs of this key word of length L. Then the total number N
of placements the ELSs have of the key word is

Smaz
Np = Y Z—(L-1)s
5=Smin
Sm(]..’l)
= (Smax — Smm + 1)Z — (L — 1) Z S
S:Smin
= (Sar = S+ VZ — (L= 1) (Sm“(sm“ t2) _ (o = D
2 2
-1
= (Smax - szn + 1 L — ——- (max ma:p Sg“n + szn)
L 1 ,
= (Smax szn + 1 (Sma$ - Smm + Smaac + szn))
— (Smax szn + 1)Z - T 5 ((max + Smm)(smam - szn) + Smaz + Smm)
L —1
= (Smax szn + 1)Z - T ((Smax - szn + 1)(Smax + Smm))

L—1
- (Smax - szn + 1) (Z - T(Smax + szn))

If the key word is not symmetric, meaning spelled the same way for-
ward and backward, and if the skips allowed are from —§5,,,, through —S,,:»
and from S,,;, through S,,., then the total number of placements must be

doubled. In this case,

NT = (Smax - szn + 1)[2Z - (L - 1)(Smax + szn)]

16

Example
If L =7, Sha =20783, Spin = 1, and Z = 304805, then

Ny = (20783 — 1+ 1)[2 % 304805 — (7 — 1)(20783 + 1)]
= 20783[609610 — 6 * 20784]
= 20783[609610 — 124704]
= 20783[484906]
= 1.00778 x 10%

If the product of the character probabilities is p = 1.098312 x 1071°, then
the expected number E of ELSs is

E = pNT
1.098312 x 1071 x 1.00778 x 10
1.10685687

The definition of the R-value is

1
R = lOglOE
In our example
R=1 ! 04409
= lo - =
107 10685687

17

